If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x+28=0
a = 1; b = 20; c = +28;
Δ = b2-4ac
Δ = 202-4·1·28
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{2}}{2*1}=\frac{-20-12\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{2}}{2*1}=\frac{-20+12\sqrt{2}}{2} $
| 4*x+7=36 | | y-2=22 | | 3n-5=7n-21 | | X^2/(.25-2x)^2=2 | | 2/5+1/10=1/2(n+4) | | 2n-5=9n+37 | | T^2+28t+625T=0 | | -(x-1)(-2)=3 | | (x+10)^2-72=0 | | -3a+56+5(28)+85+180=0 | | (x/4)-(5/2)=(x/8) | | 12/1.12=3/e | | X+6=-1+2x | | 3/2x+1/4=13/4 | | 0.5x-3.5=0.2×-0.5 | | 5x=10^12 | | 5/8=25/c | | x-3=8(x-3) | | x+0.1=4.9 | | x+6-8x=6 | | M+20=9m-4 | | n+1.3=-1.2 | | 4(-2-6x)=184 | | 1.12/12=e/3 | | 490=4.9t^2 | | 1.12/12=3/e | | 3x+x-74+x-66=360 | | 1p-5=-8-2p-24 | | 2m+4+-3m=8(m-1) | | n+1.3=2.1 | | 114.95=6x+26.45 | | 1+2x=61 |